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ABSTRACT 

Let the square of a tournament be the digraph on the same nodes with arcs where 
the directed distance in the tournament is at most two. This paper verifies Dean’s 
conjecture: any tournament has a node whose outdegree is at  least doubled in its 
square. 0 1996 John Wiley &Sons, Inc. 

1. INTRODUCTION 

In a “round robin tournament,” each team plays every other team exactly once. Assuming 
no ties, for each pair of teams i and j ,  either i beats j ,  or j beats i, but not both (see the 
table below). Team i “sort-of-beats” team j if either i beats j ,  or i beats some team which 
beat j. Instead of looking at the teams they beat, a team with a modest record might prefer 
to look at the usually larger set they sort-of-beam. 

The results can be recorded with a “tournament”. A digraph D is a set of nodes V ( D )  = 
(211, v2, . . . , v,} and a set of ordered pair of nodes R ( D )  called arcs. If (v i ,  vj) E R ( D ) ,  
we will say v, beats vj in D. Let the outset O ~ ( v i )  be the nodes that zli beats and let the 
inset I ~ ( v i )  be the nodes that beat vi. Let d ~ ( v , )  = IO~(vi)l  be the outdegree of vi. A 
tournament T is a digraph where either (vt, vj) E T or (vj, vi) E T,  but not both. Figure 
l(a) shows the tournament T which records the results from the table. If team i beats team 
j in the table, then vi beats v, in T depicted with an arrow pointing from vi to vj. 

The relation “sort-of-beats’’ is shown with the “square” of a digraph. The square of a 
digraph D (notated D2)  is a digraph with V ( D 2 )  = V ( D )  and with (vz ,v j )  E R ( D 2 )  if 
either (v%, v,?) E R ( D )  or there is a 5 with (v i ,  vk) E R ( D )  and (vk, vj) E R(D) .  Figure 
l(b) shows the square of the tournament in Figure l(a). It has an arc from vi to vj if the 
directed distance from v ,  to v3 in the tournament is at most two. 
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FIGURE 1. A tournament and its square. The labels show the outdegree of each node. Dean 
conjectured that any tournament has a node whose outdegree at  least doubles in its square. Here 
there are three such nodes: 712,V:3, and 115. 

Dean’s conjecture is that any tournament T has a node zi, with df12(zi7) 2 2d7>(vz ) .  It 
is clearly true if &(zit) = 0 for some node zi,, because then dTJ(zi,) = 0. If the minimum 
outdegree of T is one, some node w7 with d*(uU,) = 1 beats v1 which must beat another 
node U k .  Thus ?J, beats both u, and VI, in T2  giving dp(z i , )  2 2. Dean and Latka [ l ]  
continued this to verify the conjecture for tournaments whose minimum outdegree is five 
or less. They also verified the conjecture for regular and almost regular tournaments (where 
outdegrees differ by at most one). 

The problem with an approach based on the minimum outdegree of a tournament is that 
the outdegree of nodes with minimum outdegree may not double in its square. Figure 2 
gives an example of this. Instead this paper uses a “losing” probability density to verify 
Dean’s conjecture. Section 2 defines a losing density and shows it exists for every digraph. 
Section 3 shows that when a node is picked from a losing density on a tournament T,  its 
expected outdegree in T2 is at least twice what it is in T.  

Dean’s conjecture is a special case of another conjecture. An oriented graph is a loopless 
digraph with at most one arc between each pair of nodes. Seymour (quoted from [l]) 
conjectured that an oriented graph D has a node zi, with d p ( z i z )  2 2 d o ( v Z ) .  The more 
general conjecture remains unresolved. To highlight why the approach here does not 
extend to oriented graphs, results are proved to the greatest extent possible for digraphs. 

TABLE I. A fictitious round-robin tournament. A team “sort-of-beats’’ another if it either beats 
that team, or beats a team which beat that team. For example, team 6 sort-of-beats teams 1, 2, 
3, 4 and 5, because it beats 2, 3 and 5, it beats 3 which beats 4, and it beats 5 which beats 1. 

Team Teams they beat Teams they “sort-of-beat” 

1 
2 3, 5 1 ,  3, 4, 5 
3 4, 5 1, 2, 4, 5, 6 
4 2, 5, 6 1, 2, 3,  5, 6 
5 1 1, 2, 3, 4, 6, 8 
6 2, 3, 5 1, 2, 3, 4, 5 
7 
8 

2, 3, 4, 6, 8 2, 3, 4, 5, 6, 7, 8 

1, 2, 3, 4, 5, 6 
2 ,  3, 4, 5, 6, 7 

1, 2, 3, 4, 5, 6, 8 
1, 2, 3, 4, 5, 6, 7 
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FIGURE 2. An Example. The center node in this tournament has outdegree five, while all other 
nodes have outdegree at least six. However the center node beats only nine nodes in T ~ .  Thus, 
it not always true that a node of minimum outdegree beats at  least twice as many nodes in T~ as 
it beats in T (adapted from 111). 

2. WINNING AND LOSING DENSITIES 

If a node of a digraph never loses, it is a winnel: What if there are no winners? Fisher 
and Ryan [2] and Lasher, Laffond, and Le Breton [3] independently developed the idea of 
a “winning density” of a tournament. Here this idea is extended to digraphs. 

A (probability) density f on a digraph D gives each node a nonnegative value with 
f ( V ( D ) )  = 1 (let the probability of a set be the sum of the probabilities of its members). 
A density w is winning if w ( I ~ ( v ~ ) )  2 w(Og(zli)) for all nodes vi. In other words for any 
node uZ, a random node picked from a winning density is at least as likely to beat v, as it 
is to lose to vi (see Figure 3(a)). 

If a digraph has a winner, picking that node with probability 1 (and any other node 
with probability 0) gives a winning density. So a winner can be thought of as a winning 
density, but digraphs without winners can have winning densities as seen in Figure 3. Thus 
winning densities are a generalization of winners. 

Do all digraphs have winning densities? Fisher and Ryan [2] and Lasher, Laffond, 
and Le Breton [31 showed the answer is yes for tournaments (they also showed that a 
tournament has only one winning density, and it gives positive probabilities to an odd 
number of nodes). Theorem 1 uses Farkas’s Lemma (see for example, Solow [4, p. 2791) 
to extend this. Let 0 and 1 be vectors of all zeros and ones, respectively. For vectors z 
and y, let z 2 y mean that zi 2 yi for all i. 

Farkas’s Lemma. Given a matrix M and a vector b, exactly one of these systems has a 
solution: (a) Mx = b with 2 2 0; or (b) M T y  2 0 with bTy < 0. 

Let the adjacency matrix A ( D )  of a digraph D with n nodes be the n x n matrix with 
a,j = 1 if vt beats vj and aij = 0 otherwise. Let K ( D )  = A ( D )  - A ( D ) T .  For a density w, 
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w(n5)  = 0 w(v,)  = 0 

f ( V 8 )  = 0 [ ( V l )  = f 

FIGURE 3 A Winning and Losing Density This shows two densities on the tournament in 
Figure 1 Density w is winning because the inset of any node is at least as likely as its outset 
For example, a node picked from this density will beat with probability 2/3 and will lose with 
probability 1/3 Density 1 is losing because the outset of any node is at least as likely as its inset 

let the associated vector be w = (w(vI),  w(v2), . . . ~ ( v ~ ~ ) ) ~ .  Then w 2 0 and lTw = 1. 
Further ( K ( D ) w ) i  = w(O~(7) i ) )  - w(Iy,(vi)). So w is winning if K(D)w 5 0. 

Theorem 1. 
W(V,) > 0, then w(0,(vt))  = w(l~(v,)). 

identity matrix): 

Any digraph D has a winning density. Further for a winning density w, if 

Suppose D has no winning density. Then this system has no solutions ( I  is the Proof. 

Since K(D)"  = - K ( D ) ,  Farkas's Lemma shows this system has a solution: 

Thus u 2 0 and K ( D ) u  5 v l  with z1 < 0. So K(D)u < 0 and hence (l"u)-'u is the 
associated vector of a winning density, a contradiction. Therefore D has a winning density. 

Now let w be a winning density on D with associated vector w. Then K(D)w 5 0 
and w 2 0 and hence (w),(K(D)w), 5 0 for all z. Since K ( D )  is skew-symmetric, 
w'K(D)w = 0. Thus (w),(K(D)w), = 0 for all z. Therefore if (w), = W ( Z I & )  > 0, then 

0 = (K(D)w), = w(@(u7)) - w(Ir(U,)) .  

, >  

So if w(v,) > 0, then w(OD(V,)) = w(~D(v,)). I 
A density 1 on a digraph D is losing if l ( I ~ ( z 1 , ) )  5 1 ( 0 ~ ( ~ , ) )  for all nodes v, (see Figure 

3(b)). Since a losing density is a winning density on the digraph formed by reversing its 
arcs, Theorem 1 has a counterpart for losing densities. 

Corollary. Any digraph D has a losing density. Further for a losing density 1, if 1(v2) > 
0, then I ( O D ( ~ ~ ) )  = L ( ~ D ( V ~ ) ) .  
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3. AN ANALYTICAL PROOF 

Given a real value function T on the nodes of a digraph D ,  the expected value of T on a 
random node picked from density f is 

Lemma 1 gives an indirect way to find the expected outdegree. For the density in Figure 
3(b), the expected outdegree is 4 . 5  + . 2  + I . 2  + 1 . 3  + 1 . l  = 2;. Lemma 1 shows this 
equals the sum of the probabilities of the insets: 5 + $ + f, + f, + 5 + 9 9 3 + 0 + 1 = 2 1  3 9 '  

Lemma 1. 

Proof. 

Let D be a digraph with density f. Then E f ( d ~ )  = C,"=, f ( ID(v , ) ) .  

Since v, E OD(V,) if and only if v, E Io(v,), we have 

n n 71 n 

I 
Lemma 2 only applies to a losing density 1 on a tournament T. It shows that given a 

node vi, the probability that a node picked from 1 will beat vi is at least twice as much 
in T2 as in T. For example, the probability a node picked from the density in Figure 3(b) 
will beat v6 is f, in T and 1 in T2.  

Lemma 2 does not generalize to oriented graphs. For example, let D be a directed 
4-cycle. Placing i , 0, 4 , and 0 on the consecutively labeled nodes 2rl,  712,213, and v4, re- 
spectively, gives a losing density on D. But the probability a node picked from this density 
will beat v4 is f in both D and D 2 .  

Lemma 2. 
all nodes vi,  

ProoJ 
Otherwise let Q be the subtournament V ( T )  - ITz(vi). Within Q,  we have 

Let 1 be a losing density on a tournament T. Then l ( 1 p ( v i ) )  >_ 2l(I~(v~)) for 

Since 1 is a losing density, l(I~(v~)) 5 i. If l(ITz(vi)) = 1, we are done. 

Since l ( I p ( u % ) )  < 1 and hence l(V(Q)) > 0, we have l(I~(vh)) >_ Z(OQ(V~)) for some 
vh E V ( Q )  with Z(vh) > 0. 

Since vh $! I p ( v Z ) ,  no node of  IT(^,) can lose to Vh. Then each node of IT(w,) beats 
vh because T is a tournament. So IT(v,)  C I~(vh). Since IT(v,) 5 ITz(v,), we then get 
Ir(vz) 17'(vh) n I p f v , ) .  Since Q is the subtournament V ( T )  - I p ( v 2 ) ,  we have 
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Similarly, O1.(vh) C OT(U,) and hence O T ( V ~ )  n ITz(vz) C OZ(vz) n I p ( u L )  = I p ( v , )  - 
I? (v,). Therefore 

1(0T(vh) )  = l(oQ(vh)) + l(OT(vh) n I T r ( % ) )  l (oQ(uh))  + 1 ( 1 T 2 ( v z )  - 

Since l (vh)  > 0, the corollary in Section 2 gives 1 ( 0 ~ ( v h ) )  = 1(I~(vh)). Thus 

l ( o Q ( V h ) )  -k l(I’P(vz) - IT(uz) )  2 I(IQ(vh)) + l(IT(vz)). 
Since 1(OQ(vh)) 2 l(I~(vh)>, we then have Z( Ip (v , )  -IT(v,)) 2 Z(l~(v,)). The result then 

I 
Theorem 2 shows that for a node picked from a losing density on a tournament T,  its 

expected outdegree in T2 is at least twice what it is in T.  So for the density in Figure 3(b), 
the expected outdegree in T2 is . 4  + 1 . 5  + 5 ’ 5  + $ . 6  = 5: which is more than 
double the expected outdegree in T (calculated above to be 2;). 

follows because I ~ ( v h )  C ITz (vh). 

‘ 7  + 9 

Theorem 2. 

Proof. 

Let 1 be a losing density on a tournament T.  Then El (dT2)  2 2 E l ( d ~ ) .  

Lemma 1 (applied to both T and T 2 )  and Lemma 2 give 

7L n 

El(+) = El(I172(v,J) 2 . p ( I T ( U J  = 2El(dT).  
j = 1  J=1 

I 

Corollary. In any tournament T ,  there is a node v, with d7‘z(v,) 2 2dT(v,) .  
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